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Whereas malondianils like & are easily accessible from substituted malon- 

dialdehydes ?_ (R1=R3=H), persubstituted acyclic 1,3-dianils 5 (Ri + H) cannot 

be synthesized from 1,3-diketones 1. If conventional methods of C/N-condensa- 

tion"3 are applied to nmono-anilsn 5, the Beyer-Combea quinoline cyclization4 

invariably takes place. This is true even for 5g with only two bulky substitu- 

ents. Therefore, we designed a different synthetic method with C/C-condensa- 

tion, based on previous work by Marekov, 5 Stork, 
6 

and Wittig. 7 

The deprotonation of azomethines 2 is carried out in ether by addition of 

methyllithium. If evolution of methane does not begin instantaneously, 0.2 

equivalents of N,N-diisopropyl-amine are added and the amount of methyllithium 

correspondingly increased. (Pinacolone-anil 2f must be refluxed with stochio- 

metric amounts of pre-formed lithio-N,N-diis&opyl-amide for two hours.) The 

lithium salt 2 is then heated in ether with one equivalent of the imidic acid 

derivative 2 (X = OC2H5 or Cl) in an inert atmosphere for 40-80 hours. Since 

the primary product 7 is deprotonated by 2 with regeneration of 2, more CH3Li 

is added after ca. 15 and ca. 30 hours until no more methane is evolved. After 

hydrolysis with ice and basic work-up, the dianil is crystallized or distilled 

or may be purified as the perchlorate (in ethanol or I-propanol below 70°C to 

avoid quinoline formation4). Yields (not optimized) were 26-96s. 

The horseshoe-shaped (Z)-structures for 6a-e follow from the symmetry of the 

'H nmr spectrum and/or the NH absorption ara;out 6 Because 

of its bulky R' 

= 14 ppm' in CC14. 

substituent, Kf assumes the (E)-configuration characterized by 

its trans coupling constant J(R2,R3) = 12 Hz9 and NH resonance atb = 7.70 ppm. 

The liquid, analytically pure lo mixture,g/a consists of 2546 Lg (NH 3.72 ppm) 

and 75$ s (CH2 3.35 ppm), whereas s/z contains 60s 2 (CH 3.57 ppm, t with 

J P 7 Hz) as well as the horseshoe @ (NH 12.5 ppm). Crystallization from li- 

groin was employed to separate ?& (NH 5.40 ppm, equilibrium concentration 85% 

in CC14) from E (CH 5.03 ppm, 1546). 

We performed a structural proof of C/C-condensation for 7/8g by acid hydro- 

lysis; 7146 of dipivaloyl-methane lg were isolated as the cip&r complex and 

identified with authentic specimens. The alternate possibility of N-iminoalky- 

lation was normally not observed. 
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Tetrahedral, fully paramagnetic 
11 

nickel complexes 
10 

2 were prepared in 0 - 

86s yields from the 1,3-dianils by treatment with methyllithium and heating 

with [(C2H5)4N]2NiBr4 in THP for 12-86 hours under N2. 
12 

After evaporation and 

extraotion with hexane or benzene, ,9 crystallize8 from dry ethyl acetate (pre- 

aipitation with ethanol if necessary). We select here cases 9a, Et and 2 with 

symmetrical ligands (axial chirality 
13914 ) for a study of substituent rotation. 

Projecting 2 (e) along the axis C3Ni.C3' from the right, one obtains Jl_ 

with B configuration. 
14 The cyclohexenyl double bonds are symbolised by two 
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a 9 

11, R 12, s 

wedges 4, one above the horizontal and one to the left of the vertical 

(rear) chelate ring. For chemically equivalent groups q (CHg or aromatic p- 

hydrogen) we expect two 
1 
Ii nmr absorptions (a,b) of equal intensity, but only 

one for 4 due to the symmetry axis (C,). Rotations by 180~ of the rear cyc- 

lohexenyl substituent or of the rear ligand as a whole (i.e., nickel inver- 

sion) will produce enantiomer z with interchanged chemical shifts a and b. 

Since nickel inversion needs more than 23 kcal/mol, 13 the smaller barrier of 

cyclohexenyl rotation may be obtained from the a/b coalescence of the p-hydro- 

gen signals of the anilino moieties in E. We find AG* = 16 kcal/mol (320 K) 

in (C12CD)29 in reasonable agreement with barriers for 2,2'-dimethyl-biphenyl 

derivatives15 having similar methyl/hydrogen repulsions in a planar transition 

state. Due to weaker repulsions, nmr non-equivalences in IJ disappear at 240K 

with AG+ = 9.8 kcal/mol in (C12CD)2; the relevant J values" (ppm) are shown 

in 12 for 0 = 2-H and 4-H. 

e (2) is a model for the non-planar 
16 l-phenyl-naphthalene whose rotatio- 

nal barrier ia unknown. 17 Enantiomeriaation requires AG* = 15.2 kcal/mol at 

351 K in (C12CD),. Hindered rotation of the phenyl groups about their bonds 

to nitrogen is 

-389 

n:t observed for 2 (e) but detectable for jJ (12; AG' = 

-379 _ 



462 No. 5 

12.1 kcal/mol at 238 K), 2 (17.7 kcal/mol at 330 I(), and z (12; 12.8 kcal/ 

mol at 253 K). 

The highest barrier AG8 = 17.4 kcal/mol (340 K) found for 2 (9d) in 

(C12CD)2 deserves special attentiun. It could be due to rotation of the SC H 

group about the bond to C3 
65 

or to Inversion of divalent sulfur via a linear 

transition state and therefore constitutes another 18 lower energy limit for 

the latter process. 
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